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1 1 ~ .  ..~ m . . . ~ , ~ ~ . . ~ ~ ~ ~  ~ ~ ~ . .  
ADM~EI .  1 nr I Y I O I O I ~ O V  mernod is used io study ihe irmsiiion iron a compieieiy iniegrz'ok 
classical potential scattering system to a non-integrable one. We investigate the heteroclinic 
bifurcations and prove the existence of arbitrarily many elliptic and hyperbolic periodic 
orbits in a bounded scattering region. far selected parameter values some of the analytical 
predictions are checked by numerical scattering experiments. 

i. iiititi&&hii 

A classical potential scattering system is chaotic if the deflection function or any other 
convenient property of the final asymptote is discontinuous on a Cantor subset of its 
domain, which is the set of all incoming asymptotes [I]. 

Such a type of behaviour can be understood as follows. Within a bounded scattering 

invariant manifolds of this set reach out into the asymptotic region and influence the 
scattering trajectories. The incoming trajectories feel the existence of the set A and the 
deflection function shows a copy of the complicated Cantor structure. Scattering 
trajectories coming close to A spend a long time inside the interaction region and run 
alongside localized orbits. Therefore, scattering chaos can be considered as a kind of 
transient chaos. 

As a system parameter is varied, transitions between regular and chaotic behaviour 
take place also in a scattering process. Recently Bleher er 01 [2] and Ding ef  a/ [3] 
studied the generic bifurcation scenarios. Chaotic scattering occurs via a saddle-centre 
bifurcation with further qualitative changes in the chaotic set resulting from a sequence 
of homoclinic and heteroclinic intersections or by an abrupt bifurcation to fully 
developed chaotic scattering. The term fully developed chaotic scattering means that 
all periodic orbits are unstable and there are no KAM surfaces. The abrupt bifurcation 
arises as the particle energy E decreases from above a critical value E,, where E, is 
one of the maxima of the potential function which is supposed to consist of several 
hills. Til [4] has studied this type of bifurcation by using the thermodynamic approach 
to chaotic processes. 

In this paper we investigate another route which is described by the transition from 
a completely integrable scattering system to a non-integrable one. As usual integrability 
means the existence of n independent integrals of motion in involution ( n  is the number 
of degrees of freedom). Because integrability is not generic the considered route is the 
exceptional case. Nevertheless, there are a lot of important examples where this 
transition is realized, and the advantage of using a near-integrable system is given by 
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the fact that one can use some powerful analytical methods to extract important 
information. For example, the problem of finding transverse heteroclinic orbits can be 
solved analytically by the Melnikov method [ 5 ] .  On the other hand, the same problem 
can be tackled by a computer showing that there are crossing orbits [6 ] .  

To simplify matters we choose a four-hill scattering potential depending upon two 
space variables only. However, we suppose that many results can be extended to  the 
three-dimensional case. The paper is organized as follows: section 2 contains a proof 
of the existence oi the invariant hyperiioiic set A in the scattering probiem. in section 
3 the Melnikov method is used to study the bifurcation of smooth resonant tori of the 
unperturbed system into discrete periodic motions of the perturbed system. Finally, 
some of the analytical predictions are checked by numerical scattering experiments. 

B P Koch and B Bruhn 

2. Existence of transverse heteroclinic orbits 

We consider the following classical potential scattering system. Let F be the function 

x2+y2 x 4 + y 4  
F(x ,  y )  = + &x2y2 2 4 

where (x, y j  E i?’ ( e  is a smaii parameierj and iei be the bounded sei 

B = l ( x , y ) l F ( x , y ) > O }  

Then our system is given by the Hamiltonian function 

(2.1) 

(2.2) 

with the potential 

for (x, y )  E B 
otherwise. V ( x , y ) -  

Figure 1 shows a graph of the potential for E = 0.05. Outside of B there is always a 
free motion. If the perturbation parameter E is zero the system is completely integrabie, 

Figure 1. Surface plot of V ( x , y )  with ~ = 0 . 0 5 .  



Chaotic scattering in a near-integrable system 3947 

since the equations of motion split into two independent nonlinear oscillators of the 
Duffing type for (x, y )  E B 

X = p ,  p x  = -x+x' 

Y = P ,  p y  = -y+y 1 
(2.3) 

The overdot indicates differentiation with respect to the time variable. From the 
rlln.nn,.tinn nf PnP1.n.l 
I"..Y.,.IYL."L. "1 "..,.E, 

of the single oscillators the non-existence of crossing orbits for the four-hill potential 
directly follows for the case E =O. Figure 2 illustrates the structure of the phase space 
of the bounded solutions of the unperturbed system. We shall be interested in the 
geometrical structure of solutions of the perturbed system ( E  # 0) lying near the product 
flow T x  y, where r is the heteroclinic solution of the system 1 and y is one of the 
periodic orbits of system 2. The case y x y is discussed in section 3. The corresponding 
unperturbed solutions are 

t - 1 :  

A ~(r - th)=*tanh-  

where k is the elliptic modulus which is connected with the energy E, of the system 
2 by E, = k2/( 1 + k2)2. t ;  and t i  are the initial times of the independent oscillators. 
The unperturbed solutions (2.5) correspond to values of the energy given by E, = 0.25 
and O<E,<O.25.  

T h e  Melnikov method is an effective tool for the study of the perturbed system. 
wttn the unperturbed soiutions the so-caiied Meiniiov Function has to be caicuiated, 
which is a measure of the distance between the stable and unstable manifolds of 
hyperbolic fixed points in the Poincark map of the perturbed system. If this function 
has simple zeros, then there exist transverse homoclinic (heteroclinic) orbits. According 
to the Smale-Birkhoff homoclinic theorem [ 5 ]  or  the heteroclinic theorem of Bertozzi 
[7] chaotic motions therefore appear. As a rule the Melnikov method is applicable to 
nonlinear oscillators with a small time periodic perturbation [ 5 , 8 ] ;  however, the case 
of autonomous perturbations can also be treated (see e.g. [9]). Additionally the, 

__.. . 

Figure 2. Structure of the phase space of unperturbed bounded solutions 
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existence of a Smale horseshoe implies that no analytic integral of motion exists for 
the perturbed problem, other than the total energy H [lo]. 

B P Koch and B Bruhn 

We next fix the surface of section 

2 = {(x, P . J Y  = 0, P,' 0) 

and consider the Poincark map P : 2 + 2  induced by the solutions of the equations of 
motion. Note that the map P is piecewise smooth. Moreover, the Melnikov method 
and the horseshoe construction of Smale and Bertozzi can be extended to mappings 
of this type [ l l ,  121. 

Using the Fourier series repFesentation of the elliptic sine function, the Melnikov 
integral can be evaluated to give 

n2, s in(2f i .~~)  2 .  (2.6) 
4T3 

M(Tu' k)= (1 + k 2 ) K 2 ( k )  " - 0  slnh2[(2n + l )nK'(k) /2K(k)]  sinh(?rfi.) 

where K (  k) is the complete elliptic integral of the first kind K k IS the complementary 
elliptic integral, T ~ =  ( t i -  tA)/& and n, = (2n + l ) ~ /  2(1+ k ) K  Th~s functlon IS 

periodic in T~ with period K m  and has simple zeros. Moreover, a simple 
calculation yields 

j 4 ;  . . 

The maximum of the Melnikov function characterizes the width of the main stochastic 
region, i.e. the stochastic layer near the unperturbed separatrix [ 5 ] .  

Figure 3 shows a graph of max,,,'o'R M as a function of E,, where the dependence 
k = k(E , )  is used. The results obtained from the heteroclinic Melnikov function are 
summarized in the following theorem (cf [9]). 

Theorem 1. For all E # 0 sufficiently small the scattering system contains horseshoes 
in its dynamics on every energy level E E (0.25,0.5), and hence possesses no analytic 
second integral. The width of the main stochastic region is given by d,,,= 
Edmax,",. M ( T ~ ,  k). 

3 

Figure 3. Representation of max,,.,M as a function E, 
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In order to study the influence of the existence of the invariant hyperbolic set A on 
the scattering process a typical scattering experiment is considered. We choose initial 
conditions outside of B such that the incoming trajectories are straight lines parallel 
to the x axis (p ,  = O , p ,  = -m). The initial value of the y coordinate is referred to 
as the impact parameter b. 

Because we discuss the near-integrable case it is possible to predict an approximate 
value of the impact parameter at which the critical behaviour is expected. In a first 
step we look for trajectories which lie on the stable manifold of the right hyperbolic 
fixed point on X in the unperturbed case E = 0. The corresponding impact parameters 
bo are simply given by bo = *y,, where y ,  is the amplitude of the periodic saddle orbit 
at x = 1. Using energy conservation we obtain 

bo= + J l - q =  +J1 - d F E  (2.8) 
where E = E ,  + E, and E, =0.25 is the separatrix energy. Now let E be different from 
zero but sufficiently small. Then the hyperbolic set A is localized in the neighbourhood 
of the unperturbed separatrix solution. Trajectories which start with an impact para- 
meter b near the value given by (2.8) are influenced by this hyperbolic set and we 
expect to find a discontinuous behaviour of the deflection function. However, (2.8) is 
a good approximation for very small E only because it is based on the picture of two 
independent oscillators. A better estimation can be obtained by taking the interaction 
energy H ,  = &x2yZ of the two oscillators into account. The interaction reduces the 
energy part H, + Hy which is available to the oscillators. At x = 1, y = bo the interaction 
energy is given by H,(x  = 1, y = bo) = ebi = E ( ]  --) where we have inserted the 
zero-order result (2.8). Taking this energy reduction into account, i.e. replacing in (2.8) 
E byE-e( l - - )g ivestof irs torderin~ 

b, = bo( 1 -L) 1 - b i  ' (2.9) 

Obviously, for bo near 1 (i.e. E near 0.5) this approximation breaks down. We discuss 
some numerical experiments to compare (2.8) and (2.9) in section 4. 

3. Existence of elliptic and hyperbolic periodic orbits 

The result of section 2 leaves open the question whether or not the chaotic scattering 
is fully developed. In order to study this question we will concentrate on the dynamics 
of periodic orbits under perturbation. The subharmonic Melnikov function is then 
used to study the bifurcation of smooth resonant tori for E = 0 into discrete periodic 
motions for E # 0 as described in [8 ,13 ] .  The unperturbed periodic solutions are 

where 

OSEx,E ,<0 .25 .  (3 .2)  
1 - d F q ,  

1 + d i = q  k: = 
1 - -  
1+- 

k:  = 

E, and E, indicate the energy of the single oscillators (cf (2 .4)) .  For a resonance of 
order m / n ,  we require 

nT, = mT, (3.3) 
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where m, n are relatively prime natural numbers and T,.2 are the periods o f  (3 .1) .  The 
resonance condition relating the energies E, and E, is therefore 

B P Koch and B Bruhn 

(3 .4 )  

(cf (3 .2) ) .  
We work in a constant energy surface H = E with E E (0,O.S). However, for the 

scattering process the interval E E (0 .25 ,0 .5)  is important only. The resonance condition 
(3.4) has a unique solution for each pair ( m ,  n) and this result implies that the 
unperturbed system has a dense set of resonant ton. 

We next compute the subharmonic Melnikov function. Selecting a total energy E 
and an admissible pair (m, n ) ,  the Melnikov integral is given by (cf [ 1 3 ] )  

d 
y'( f +  to) - x 2 ( t )  dt  M ( f o ;  m, n, E )  = -- 

dt 

(3.5) 
Using the Fourier series expansion [ 141 

2 r r m  

4k'K' ;=o 
sn(u,k)=-  

where 

qi+'I2 
1 - q"+' 

f j ( k ) = [ 4 ( l  + k 2 ) K 2 - ( 2 i +  1)2rr2] - 
and q = exp(-rrK'/K) is the elliptic nome, and interchanging the order of summation 
and integration, we have 

m m  

M ( t , ; m , n , E ) = A  1 X S ; ( k 2 ) & ( k l ) ( 2 j + l )  
j - 0  ;=o 

where the constant A is defined by  

An application of the addition formulae yields 
m m  

M ( f o ;  m , n , E ) = A  1 1 &(k2)&(k,)(2j+l)sin 
j=o i=o 

m r ~ 2  

cos (2 i+ l ) -  cos ( Z j + l ) -  df. 
x [ '3 [ 

(3 .6 )  

(3.7) 
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since nT, = mT,. From condition (3.8) follows that m, n are both odd and one addi- 
tionally has ( 2 i f l )  = ( 2 / ~ + l ) n ,  ( 2 j + l )  = ( 2 p +  1)m with p =0 ,  1 , 2 , .  . . . Finally, one 
obtains 

cF(1)c , , (2) (2p+1)  sin 
(3.9) 1 m r K ’ (  k,) 

ZK(k1)  

m 

M ( t o ;  m, n, E )  = A 
’=Osinh ( 2 @ + 1 )  nrK’ (k2) ]  sinh [ ( 2 p +  1) [ 2 K ( k d  

where 

and 

Obviously, the series (3 .9)  converges uniformly in any to-interval. This follows from 
the fact that we have used the Fourier expansion of the continuous function sn2(u, k ) .  
The same statement is valid for the series (2 .6) .  

To count the number of periodic orbits for E # 0 one has to count the number 
of zeros of the Melnikov function in a suitable to-interval. It is easy to show that 
the function (3.9) has at least 2m simple zeros in the interval toe[O, T,). This means 
that there are at least two isolated m-periodic orbits. For E E (0,0.25) the pair 
(m,  n) of odd, relatively prime integers is restricted to m / n e  
[ K ( O ) / K ( k ) m , K ( k ) m / K ( O ) ] ,  where k 2 = ( 1 - 2 E - m ) / 2 E  and for 
E E [0.25,0.5) there is no restriction for ( m ,  n ) .  Therefore we obtain the following 
theorem (cf also [13 ] ) .  

Theorem 2. For any integer N < w, there exists E (  N )  > 0 such that, for 0 < E S E (N), 
on each energy surface H = E E ( 0 , O . S )  of (2 .2) ,  and in any neighbourhood of an 
invariant torus for the unperturbed system there are at least N distinct periodic orbits. 

Note that N must be finite because the Melnikov function (3 .9)  tends to zero as 
m, n + w and for EM - O( e 2 )  the obtained first order perturbation results are becoming 
invalid. However, N can be chosen arbitrarily large if E is sufficiently small. 

Using the arguments of Arnold and Avez [15 ] ,  it can be shown that half of the 
periodic orbits are hyperbolic and half are elliptic, if E is small enough. For the 
scattering process with E E (0.25: 0.5) this means that the chaotic scattering arising 
from the heteroclinic intersections of section 2 is not fully developed. Additionally 
one finds the irrational KAM tori for E sufficiently small. It must be underlined that 
in contrast to [13]  the range of validity of theorem 2 contains also the scattering sector 
E E (0.25,O.S). 

4. Discussion and numerical experiments 

In order to demonstrate the validity of the analytical predictions, some comparisons 
with numerical calculations have been carried out. Figure 4 shows parts of the stable 
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- 1  Q x- 1 

Figure 4. Pans of the unstable and stable manifolds of hyperbolic fixed points of the 
PaincarC map for E = 0.1 and E = 0.4. 

and unstable manifolds of the hyperbolic fixed points corresponding to the Poincari 
map P: X + X for E = 0.1. The surface of section X is defined as in section 2. The other 
branches of the manifolds (not shown here) can be obtained by using the symmetries 
nf the e”,uztinns nf ma!ion. C ! e z ! y  visib!. i s  the predicted crossing of the stab!e and 
unstable manifolds. According to the heteroclinic theorem [7] there exists the invariant 
set A near the unperturbed separatrix which contains the bounded chaotic orbits. 

Figure 5 shows the Poincare section for selected initial values of the perturbed 
equations of motion. The total particle energy amounts to E =0.335, and the existence 
of stable periodic orbits and KAM tori in the region which at x = 0 is approximately 
characterized by d2(E -0 .25 )<px  <a can be understood as follows. For E = O  
bounded motion of both oscillators is possible only in the mentioned interval of p x .  
According to theorem 2 and the KAM theorem for sufficiently small E we therefore 
observe periodic and quasiperiodic orbits near the unperturbed ones. 

Theorems 1 and 2 make predictions only for transitions from the integrable to the 
non-integrable system, i.e. at E = constant we vary the perturbation parameter E. What 
is observed for E =constant as the energy E decreases from above the maximum height 
of the potential, E,= 1/2(1-2~) ,  to below? According to the results of Bleher et ol 

- 
-1 0 X I  

Figure 5. Poincari. section plot for selected initial data and E =0.1, E =0.335. 
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[2] we expect an abrupt bifurcation to fully developed scattering. However, the 
numerical experiment shows in contrast to other scattering systems (see e.g. [2,161) 
that the energy range where hyperbolic chaos exists is relatively small and becomes 
even smaller as E tends to zero. For example, for E = 0.5 one has E, = 0.555. Stable 
tori and stable periodic orbits can be observed until to E - 0.528. Above this value, 
i.e. in the interval 0.528 < E  <E,, no stable bounded orbits are found in our numerical 
experiments. We suppose that in this range chaotic scattering is fully developed. 

cannot be studied by using the Melnikov method because the unperturbed system has 
bounded solutions for E S 0.5 only. 

In  order to study the influence of the bounded invariant set A on the scattering 
behaviour we have performed some numerical calculations. We choose initial condi- 
tions outside of B, i.e. x = 1.8, y = b, px = -m, py  = 0. In figure 6 the angle 0 between 
the outgoing particle velocity and the x axis is plotted as a function of the impact 
parameter b. For E = 0.1 and E = 0.45 figure 6 clearly shows singularities in the deflection 
function @ ( b ) .  Successive blow-ups (not shown here) suggest that the deflection 
function is singular on a Cantor set indicating the chaotic nature of the invariant set 
A. Of course, the position of the various intervals along the b axis depends upon E 
and E. The dashed line in figure 6 shows @( b )  in the integrable case E = 0. Moreover, 
no singularities are observed for arbitrarily chosen values of the impact parameter. 

U .... ~ ........ L̂ ..̂  -- ......,.A :--, ---- F ^F  *L:̂  ... ..,. I%.. _^_I ~ n c, c, F r l u w ~ " ~ I ,  wzi ,.a"= ,,U a"'a.1yuca.L p u u ,  U1 &,.In L C I U L L .  L l l C  'LLc1sy L a " 6 c  U,, . L .Im 

w... , , V ' .  .. U' I 

. . .  
. . . .  . . . . . . . . . . . . .  . . . . . . . .  

ii .U;, : .  :: 
............................ .........U2.. 0 .............. I- ' # :  . . .  " 

. , .  . . . . . . . . . . . . . .  . . . . . . . . . .  . .  . .  . .  
. . . . .  0 

0.597 b - 0.W7 

FipK 5. P.cpreJcn!r!inz or !hC dcRcc!ion f.!!c!ioa e!!?); E =0.45, E =O.!, d8rhed !inc: 
E = 0.45, E =O.  

Table 1 shows some results of numerical scattering experiments for selected values 
E and E. The theoretical values of bo and b,  are calculated by means of (2.8) and 
(2.9). The numerical value bnu, is given by the position of the centre of the interval 
along the b axis in which the Cantor set of singularities is localized. The width of this 
interval depends upon E and E and is relatively small in comparison with other 
scattering systems [ 1-31. e.g. for E = 0.1 and E = 0.4 the width amounts to 0.006. 

There is a good agreement between the numerical values bnu, and the theoretical 
impact parameters b, for all energy values which are far from E = O S .  According to 
the approximations in (2.9) the differences between b,,, and b ,  become large for 
E = 0.45 and E > 0.1. Our investigation shows that the Melnikov method can success- 
fully be applied to near-integrable scattering systems. However, there are some further 
problems with regard to other important quantities of chaotic scattering. For example, 
the Melnikov function can be used to estimate escape rates, stretching coefficients and 
the topological entropy [17]. Moreover, the width of the stochastic layer, which is 



3954 B P Koch and B Bruhn 

Table 1. Critical values of the impact parameter (numerical results b,,,, theoretical values 
bo, b ,  according to (2.8) and (2.9)). 

E 
E 0.27 0.335 0.4 0.45 

4 0.202 0.433 0.606 0.743 
0.01 b, 0.200 0.427 0.596 0.726 

bnwm 0.199 0.426 0.593 0.723 
0.05 b, 0.191 0.406 0,558 0.660 

bnu,,, 0.190 0.400 0.552 0.660 
0.1 b, 0.181 0.379 0.510 0.577 

bnum 0.179 0.373 0.510 0.602 
o.15 b, 0.170 0.353 0.462 0.494 

bnUm 0.170 0.351 0.476 0.558 

described by the maximum of the Melnikov function, must be connected with the 
width of the irregular intervals of the deflection function. 

Although we have investigated a particular system it is apparent that the same 
general approach can be used for other near-integrable scattering systems and we 
expect similar results with regard to the bifurcation behaviour. 
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