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Absiract. The Melnikov method is used o study ihe iransition {rom a comipieiely integrabie
classical potential scattering system to a non-integrable one. We investigate the heteroclinic
bifurcations and prove the existence of arbitrarily many elliptic and hyperbolic periodic
orbits in a bounded scattering region. For selected parameter values some of the analytical
predictions are checked by numerical scattering experiments.

A classical potential scattering system is chaotic if the deflection function or any other
convenient property of the final asymptote is discontinuous on a Cantor subset of its
domain, which is the set of all incoming asymptotes [1].

Such a type of behaviour can be understood as follows. Within a bounded scattering
region an invariant hyperbolic set A exists which contains bounded chaotic orbits, The
invariant manifolds of this set reach out into the asymptotic region and influence the
scattering trajectories. The incoming trajectories feel the existence of the set A and the
deflection function shows a copy of the complicated Cantor structure. Scattering
trajectories coming close to A spend a long time inside the interaction region and run
alongside localized orbits. Therefore, scattering chaos can be considered as a kind of
transient chaos.

As a system parameter is varied, transitions between regular and chaotic behaviour
take place also in a scattering process. Recently Bleher er al [2] and Ding et al [3]
studied the generic bifurcation scenarios. Chaotic scattering occurs via a saddle-centre
bifurcation with further qualitative changes in the chaotic set resulting from a sequence
of homoclinic and heteroclinic intersections or by an abrupt bifurcation to fully
developed chaotic scattering. The term fully developed chaotic scattering means that
all periodic orbits are unstable and there are no kaM surfaces. The abrupt bifurcation
arises as the particle energy E decreases from above a critical value E,,, where E_, is
one of the maxima of the potential function which is supposed to consist of several
hills. Té] [4] has studied this type of bifurcation by using the thermodynamic approach
to chactic processes.

In this paper we investigate another route which is described by the transition from
a completely integrable scattering system to a non-integrable one. As usual integrability
means the existence of n independent integrals of motion in involution (» is the number
of degrees of freedom). Because integrability is not generic the considered route is the
exceptional case. Nevertheless, there are a lot of important examples where this
transition is realized, and the advantage of using a near-integrable system is given by
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the fact that one can use some powerful analytical methods to extract important
information. For example, the problem of finding transverse heteroclinic orbits can be
solved analytically by the Melnikov method [5]. On the other hand, the same problem
can be tackled by a computer showing that there are crossing orbits [6].

To simplify matters we choose a four-hill scattering potential depending upon two
space variables only. However, we suppose that many results can be extended to the
three-dimensional case. The paper is organized as follows: section 2 contains a proof
of the existence of the invariant hyperbolic set A in the scattering probiem. In section
3 the Melnikov method is used to study the bifurcation of smooth resonant tori of the
unperturbed system into discrete periedic motions of the perturbed system. Finally,
some of the analytical predictions are checked by numerical scattering experiments.

2. Existence of transverse heteroclinic orbits

We consider the following classical potential scattering system, Let F be the function
2 2 4 4

X+ X"+

— 4 _____4y + ex?y? (2.1)

Fix,y)=
where {x, y}€ R” (& is a smali parameter) and let B be the bounded set
B={(x, y)|F(x, y)>0}

Then our system is given by the Hamiltonian function

2P
H(pe, by, %, 1) =P B4 Vi, y) (22)
with the potential
F(x, for (x,y)e B
V(x,y)E{ (57) ( ?)
0 otherwise.

Figure 1 shows a graph of the potential for £ =0.05. Outside of B there is alwa);s a
free motion. If the perturbation parameter ¢ is zero the system is completely integrable,
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Figure 1. Surface plot of V{(x, ) with £=0.05.
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since the equations of motion split into two independent nonlinear oscillators of the
Duffing type for (x, y)e B

- . 3
X =Px P=—x+x
(2.3)
y=p, py=—y+y.
The overdot indicates differentiation with respect to the time varitable. From the
conservation of energy
2 2 4
Px X X
Hx = —+'-—- e — Ex
2 2 4
2 2 4 (24)
H=Px 2 _F

of the single oscillators the non-existence of crossing orbits for the four-hill potential
directly follows for the case £ =0. Figure 2 illustrates the structure of the phase space
of the bounded solutions of the unperturbed system. We shall be interested in the
geometrical structure of solutions of the perturbed system (e # 0) lying near the product
flow I'x y, where I is the heteroclinic solution of the system 1 and y is one of the
periodic orbits of system 2. The case ¥ X y is discussed in section 3. The corresponding
unperturbed solutions are

t—tg

x(f—t}) = £tanh 7

V2k 1—12
(1—1t2)= -<_n( ,k)
W e 1+ 12

where k is the elliptic modulus which is connected with the energy E, of the system
2 by E, =k*/{(1+k%)’. t; and 1} are the initial times of the independent oscillators.
The unperturbed solutions (2.5) correspond to values of the energy given by E, =0.25
and 0< E, <0.25,

The Melnikov method is an effective tool for the study of the perturbed system.
With the unperturbed solutions the so-calied Melnikov function has to be caiculated,
which is a measure of the distance between the stable and unstable manifolds of
hyperbolic fixed points in the Poincaré map of the perturbed system. If this function
has simple zeros, then there exist transverse homoclinic (heteroclinic) orbits. According
to the Smale-Birkhoff homoclinic theorem [5] or the heteroclinic theorem of Bertozzi
{7] chaotic motions therefore appear. As a rule the Melnikov method is applicable to
nonlinear oscillators with a small time periodic perturbation [5, 8]; however, the case
of autonomous perturbations can also be treated (see e.g. [9]). Additionally the

(2.5)

N TNy

Figure 2. Structure of the phase space of unperturbed bounded solutions.
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existence of a Smale horseshoe implies that no analytic integral of motion exists for
the perturbed problem, other than the total energy H [10].
We next fix the surface of section

L={(x,ply=0,p,>0}

and consider the Poincaré map P:X > X induced by the solutions of the equations of
motion. Note that the map P is piecewise smooth. Moreover, the Melnikov method
and the horseshoe construction of Smale and Bertozzi can be extended to mappings
of this type [11, 12].

Using the Fourier series representation of the elliptic sine function, the Melnikov
integral can be evaluated to give

47’ i Q2 sin(2€Q,,7)
1+ k) K*(k) Eo sinh’[(2n+ )wK'(k)/2K (k)] sinh(7(Q,,)
where K (k) is the complete elliptic integral of the first kind, K'(k) is the complementary
elliptic integral, 7o=(t2—1)/v2 and Q,=(2n+1)7/V2(1+k*)K. This function is
periodic in 7, with period Kv2(1+ k%) and has simple zeros. Moreover, a simple
calculation yields

M(TOs k) =

(2.6)

4 ® (-1)"Q?
max M(7o, k) =3 k7 L Gnhl(2n + 7K /2K sinh(7 0} (27)

The maximum of the Melnikov function characterizes the width of the main stochastic
region, i.e. the stochastic layer near the unperturbed separatrix [5].

Figure 3 shows a graph of max, .. M as a function of E,, where the dependence
k=k(E,) is used. The results obtained from the heteroclinic Melnikov function are
summarized in the following theorem (cf [9]).

Theorem 1. For all £ # 0 sufficiently small the scattering system contains horseshoes
in its dynamics on every energy level E €(0.25,0.5), and hence possesses no analytic
second integral. The width of the main stochastic region is given by d..=
ev2 max.,cg M(7,, k).

max M

2
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0 ] 0.2 —= 0.3
Ey

Figure 3. Representation of max, g M as a function of E,.
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In order to study the influence of the existence of the invariant hyperbolic set A on
the scattering process a typical scattering experiment is considered. We choose initial
conditions outside of B such that the incoming trajectories are straight lines parallel
to the x axis (p, =0, p. = —~v2E). The initial value of the y coordinate is referred to
as the impact parameter b.

Because we discuss the near-integrable case it is possible to predict an approximate
value of the impact parameter at which the critical behaviour is expected. In a first
step we look for trajectories which lie on the stable manifold of the right hyperbolic
fixed point on X in the unperturbed case £ = 0. The corresponding impact parameters
b, are simply given by by = +y,,, where y,, is the amplitude of the periodic saddle orbit
at x =1. Using energy conservation we obtain

bo= V1 —VI-4E, = +V1-v2-4E (2.8)

where E =E, + E, and E, =0.25 is the separatrix energy. Now let ¢ be different from
zero but sufficiently small. Then the hyperbolic set A is localized in the neighbourhood
of the unperturbed separatrix solution. Frajectories which start with an impact para-
meter b near the value given by (2.8) are influenced by this hyperbolic set and we
expect to find a discontinuous behaviour of the deflection function. However, (2.8) is
a good approximation for very small £ only because it is based on the picture of two
independent oscillators. A better estimation can be obtained by taking the interaction
energy H, = ex?y? of the two oscillators into account. The interaction reduces the
energy part H, + H, which is available to the oscillators. At x =1, y = b, the interaction
energy is given by H,(x=1, y = by) = eb3= (1 —+v2—4E) where we have inserted the
zero-order result (2.8). Taking this energy reduction into account, i.e. replacing in (2.3)
E by E—=(1—-+v2—4E) gives to first order in ¢

£
by=bl1-———]. 2.9
=bo(1-7253) @9)
Obviously, for b, near 1 (i.e. E near 0.5) this approximation breaks down. We discuss
some numerical experiments to compare (2.8) and (2.9) in section 4.

3. Existence of elliptic and hyperbolic periodic orbits

The result of section 2 leaves open the question whether or not the chaotic scattering
is fully developed. In order to study this question we will concentrate on the dynamics
of periodic orbits under perturbation. The subharmonic Melnikov function is then
used to study the bifurcation of smooth resonant tori for £ =0 into discrete periodic
motiens for ¢ # 0 as described in [8, 13]. The unperturbed periodic solutions are

x(1)= sn Lk ()= sn( ,k) (3.1)
A+ Wi+ ! O orrs S Wopre B
where
=1V 4k P L 0<E,E <025. (3.2)

' +V1-4E, 2" 1+J/1-4E,
E, and E, indicate the energy of the single oscillators {cf (2.4)). For a resonance of
order m/ n, we require

nTy=mT, (3.3)
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where m, n are relatively prime natural numbers and T, ; are the periods of (3.1). The
resonance condition relating the energies E, and E, is therefore

nK (ky(E.)) _ mK(ky(E,))
J1+v1-4E. Vi+vi_4E,

(3.4)

{(cf (3.2)).

We work in a constant energy surface H = E with E (0, 0.5). However, for the
scattering process the interval E € (0.25, 0.5} is important only. The resonance condition
(3.4) has a unique solution for each pair (m, n) and this result implies that the
unperturbed system has a dense set of resonant tori.

We next compute the subharmonic Melnikov function. Selecting a total energy E
and an admissible pair (m, n), the Melnikov integral is given by (cf [13])

T2 mT,/2 d
Mg mnBr= -2 [ g L a

T J—mTy/2
T.kik} mTy/2 t+1t
= 2 22 172 a2 J Snz( 023 kz) d (—t-', kl) dt.
a{l1+ ki1 +k3) —mTy2 Vi+k; dr V1+k]

(3.5)
Using the Fourier series expansion [14]

sn’(u, k) = 4k3K3 > §,(k)sin|:(2i+l)%]
where

i+1/2
£(k) = {4(1+k2)K2—(21+1)2w2]i—2m

and g =exp(—aK'/ K} is the elliptic nome, and interchanging the order of summation
and integration, we have

M(to; m,n, E}=A Z Z &i(k2) (ki) (2 +1)

=0 i=0
s " sinrulfi)27r(t+r0)-l COSr(2:+1}3£'£-| dr
J mTz/z L Tz J |_ J TlJ

where the constant A is defined by
T‘z‘l"l'2
AT, {1+ kDky Kk )1+ k) kK (k)

An application of the addition formulae yields

A= (3.6)

M(to; m,n E)=A Y ¥ fj(kz)é(kl)(zj‘*'l)Sin[(zi"*'l)2mo]

j=0 i=0 T2

><J'MT2M2 cos[(2i+1)%] cos[(2j+1) 211-:] de. (3.7)
2

—mTy/2 T,

Using the orthogonality of the
not vanish if and onily if

Qi+ _@j+1)

T, T, Sm2i+1)=n(2j+1) (3.8)
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since nT, = mT,. From condition (3.8) follows that m, n are both odd and one addi-
tionally has (2i+1)=2p+1)n,(2j+1)=Cu+1)m with p=0,1,2,.... Finally, one¢
obtains

- €, (1)e,(2)(2p+1) sin[(2,.c+ 1)m 2;”0]
M(ty;mn,E)=A ¥ - (3.9)
u=0 . nrK'(ky) | . muK'(k;)
51nh[(2u+1)—2K(k2) ]smh [(2”+1)—2K(k.) ]
where
A= —8%°m*
T’k K (k) koK (k)
and
T} 2.2 2 T; 2.3 2
e, ()= -I—(Z,u,+1} me c,(2)= T—(Z,u-i—l) niw .

Obviously, the series {3.9) converges uniformly in any f,-interval. This follows from
the fact that we have used the Fourier expansion of the continuous function sn*(u, k).
The same statement is valid for the series (2.6).

To count the number of periodic orbits for £ # 0 one has to count the number
of zeros of the Melnikov function in a suitable #-interval. It is easy to show that
the function (3.9} has at least 2m simple zeros in the interval 1,€[0, T,). This means
that there are at least two isolated m-periodic orbits. For E €(0,0.25) the pair
(m,n) of odd, relatively prime integers is restricted to m/ne
[K(0)/ K(kWTT+EK, K(k)V1+k%/K(0)], where k*=(1-2E ~v1—4E)/2E and for
E [0.25, 0.5) there is no restriction for (m, n). Therefore we obtain the following
theorem (cf also [13]).

Theorem 2. For any integer N <0, there exists (N} > 0 such that, for 0<<e < g(N),
on each energy surface H=E (0,0.5) of (2.2}, and in any neighbourhood of an
invariant torus for the unperturbed system there are at least N distinct periodic orbits,

Note that N must be finite because the Melnikov function (3.9) tends to zero as
m, n-»o0 and for eM ~ O{e?) the obtained first order perturbation results are becoming
invalid. However, N can be chosen arbitrarily large if ¢ is sufficiently small.

Using the arguments of Arnold and Avez [15], it can be shown that half of the
periodic orbits are hyperbolic and half are elliptic, if £ is small enough. For the
scattering process with £ €(0.25,0.5) this means that the chaotic scattering arising
from the heteroclinic intersections of section 2 is not fully developed. Additionally
one finds the irrational KAM tori for € sufficiently small. It must be underlined that
in contrast to [13] the range of validity of theorem 2 contains also the scattering sector
E €{0.25,0.5).

4. Discussion and numerical experiments

In order to demonstrate the validity of the analytical predictions, some comparisons
with numerical calculations have been carried out. Figure 4 shows parts of the stable
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Figure 4. Parts of the unstable and stable manifolds of hyperbolic fixed points of the
Poincaré map for £ =0.1 and E=04.

and unstable manifolds of the hyperbolic fixed points corresponding to the Poincaré
map P:X- X for € =0.1. The surface of section X is defined as in section 2, The other
branches of the manifolds (not shown here) can be cobtained by using the symmetries
of the equations of motion, Clearly visible is the predicted crossing of the stable and
unstable manifolds. According to the heteroclinic theorem [7] there exists the invariant
set A near the unperturbed separatrix which contains the bounded chaotic orbits.

Figure 5 shows the Poincaré section for selected initial values of the perturbed
equations of motion. The total particle energy amounts to E =0.335, and the existence
of stable periodic orbits and KAM tori in the region which at x =0 is approximately
characterized by v2(E —0.25) < p,<+0.5 can be understood as follows. For £¢=0
bounded motion of both oscillators is possible only in the mentioned interval of p,.
According to theorem 2 and the xam theorem for sufficiently small £ we therefore
observe periodic and quasiperiodic orbits near the unperturbed ones.

Theorems 1 and 2 make predictions only for transitions from the integrable to the
non-integrable system, i.e. at F = constant we vary the perturbation parameter e. What
is observed for £ = constant as the energy E decreases from above the maximum height
of the potential, E,,=1/2(1—2¢), to below? According to the results of Bleher et al

1 T T

—

P

-1 0 %

Figure 5. Poincaré section plot for selected initial data and e =0.1, E =0.335.
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[2] we expect an abrupt bifurcation to fully developed scattering. However, the
numerical experiment shows in contrast to other scattering systems (see e.g. [2, 16])
that the energy range where hyperbolic chaos exists is relatively small and becomes
even smaller as e tends to zero. For example, for £ = 0.5 one has E_,=0.555. Stable
tori and stable periodic orbits can be observed until to E = (.528, Above this value,
i.e. in the interval 0.528 < E < E,,,, no stable bounded orbits are found in our numerical
experiments We suppose that in this range chaotic scattering is fully developed.

........... Lo e nnalutianl maanf AF thio vacnlt Tha amarasy ramea L~ L.~ F

r1uwcv=1, W< nHave no dlidlyuvarl piuul l.lllb resur. 1nc VIILIREY lallgt V.0 ™ &L ™ &~m
cannot be studied by using the Melnikov method because the unperturbed system has
bounded solutions for E=0.5 only.

In order to study the influence of the bounded invariant set A on the scattering
behaviour we have performed some numerical calculations. We choose initial condi-
tions outside of B,i.e. x=1.8,y=b, p. = —v2E, p, =0. In figure 6 the angle © between
the outgoing particle velocity and the x axis is plotted as a function of the impact
parameter b. For e =0.1 and E = (.45 figure 6 clearly shows singularities in the deflection
function ®(b). Successive blow-ups (not shown here) suggest that the deflection
function is singular on a Cantor set indicating the chaotic nature of the invariant set
A. Of course, the position of the various intervals along the b axis depends upon E
and e. The dashed line in figure 6 shows &(b) in the integrable case ¢ = (. Moreover,
no singularities are observed for arbitrarily chosen values of the impact parameter.

e ._..-‘_ﬁﬁ_uf.:w__.-..,_ .U;.-:..-a.f_\g---.__..-_-ﬁ..“ .

0

0597 b-—=08607
Figure §. Representation of the deflection function @({b); E =045, £=0.1, dashed line
E =045, =0

Table 1 shows some results of numerical scattering experiments for selected values
E and e. The theoretical values of by and b, are calculated by means of (2.8) and
(2.9). The numerical value b,,., is given by the position of the centre of the interval
along the b axis in which the Cantor set of singularities is localized. The width of this
interval depends upon ¢ and E and is relatively small in comparison with other
scattering systems [1-3], e.g. for ¢ = 0.1 and E =0.4 the width amounts to 0.006.

There is a good agreement between the numericai values b, and the theoretical
impact parameters b, for all energy values which are far from E =0.5. According to
the approximations in (2.9} the differences between b,,, and b, become large for
E =0.45 and £ > 0.). Qur investigation shows that the Melnikov method can success-
fully be applied to near-integrable scattering systems, However, there are some further
problems with regard to other important quantities of chaotic scattering. For example,
the Melnikov function can be used to estimate escape rates, stretching coefficients and
the topological entropy [17]. Moreover, the width of the stochastic layer, which is
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Table 1. Critical values of the impact parameter (numerical results b, , theoretical values
b,, b, according to (2.8) and (2.9)).

E
P 0.27 0335 04 0.45
be 0202 0431 0606 0743
0.01 b, 0.200 0427 0596 0726
boum 0199 0426 0593 0723
0.0 b, 0.191 0406 0558  0.660
b 0190 0400 0552  0.660
0.1 b, 0181 0379 0510 0.577
boum 0179 0373 0510 0.602
0.15 b, 0.170 0353 0462 0.494
b 0.170 0351 0476 0.558

Fl
=
El

described by the maximum of the Melnikov function, must be connected with the
width of the irregular intervals of the deflection function.

Although we have investigated a particular system it is apparent that the same
general approach can be used for other near-integrable scattering systems and we
expect similar results with regard to the bifurcation behaviour.
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